Robust estimation of Stokes parameters with a partial liquid-crystal polarimeter under thermal drift.

نویسندگان

  • Patrick Terrier
  • Jean Michel Charbois
  • Vincent Devlaminck
چکیده

Polarized light carries information about the various physical parameters that have been acting upon it. Obtaining information on the observed object by studying the polarization of light reflected can be accomplished by several methods. The four Stokes parameters of the reflected light wave (S0, S1, S2, and S3) are generally estimated by observing the scene, with a CCD sensor, through a polarimeter. This device relies on acquisition of multiple frames relative to an adjustment parameter of the optical components: positioning angle or optical delay. In real-time applications, the polarimeter often uses liquid-crystal components. The adjustment retardation parameter is then controlled by an electric voltage. However, the retardation introduced by a liquid-crystal variable retarder (LCVR) is strongly dependent on temperature. One solution is to hold constant the LCVR temperature by using a thermostated environment, but this is not always possible (power consumption in remote sensing, for instance). In J. Opt. A2, 216 (2000), Bueno has showed that, in this latter case, it is necessary to calibrate the LCVR just before carrying out measurement and to do this again approximately every 10 min. In this article, we propose a robust and accurate solution, based on the self-calibration principle, for measuring the Stokes parameters of partially linearly polarized light. Unlike methods generally reported in the literature, our polarization parameter estimation is independent of the accurate knowledge of the polarimeter variable retardation values and, thus, does not require a calibration process at regular intervals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging linear polarimetry using a single ferroelectric liquid crystal modulator.

In the field of polarimetry, ferroelectric liquid crystal cells are mostly used as bistable polarization rotators suitable to analyze crossed polarizations. This paper shows that, provided such a cell is used at its nominal wavelength and correctly driven, its behavior is close to that of a tunable half-wave plate, and it can be used with much benefit in lightweight imaging polarimetric setups....

متن کامل

Target detection with a liquid-crystal-based passive Stokes polarimeter.

We present an imaging system that measures the polarimetric state of the light coming from each point of a scene. This system, which determines the four components of the Stokes vector at each spatial location, is based on a liquid-crystal polarization modulator, which makes it possible to acquire four-dimensional Stokes parameter images at a standard video rate. We show that using such polarim...

متن کامل

The imaging equation for a microgrid linear Stokes polarimeter

Imaging polarimeters have currently and historically been largely used for remote sensing tasks. They have also been used to evaluate the defects and calibrate the polarization of liquid crystal displays. A particular type of polarimeter that has a great deal of unrealized potential is the microgrid array linear Stokes polarimeter. This type of polarimeter is not often used because of reconstru...

متن کامل

A high spatial resolution Stokes polarimeter for motional Stark effect imaging.

We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high e...

متن کامل

Full Stokes polarization camera

Objective and background: We present a new version of Bossa Nova Technologies’ passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of cir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 53 29  شماره 

صفحات  -

تاریخ انتشار 2014